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Abstract. In this work we report on a new QCD sum rule analysis to predict masses of the excited
baryon states (e.g. Σ (1620) and Λ (1405)) by using multiquark interpolating fields ((qq̄)(qqq)). For the
Σ (1620) we consider the K̄N , πΣ, and πΛ (I=1) multiquark interpolating fields. The calculated mass
from those multiquark states is about 1.592 GeV. For the Λ (1405) we first show the result using the
π+Σ− + π0Σ0 + π−Σ+ (I=0) multiquark interpolating field, and compare the calculated mass to that
of our previous result using the π0Σ0 multiquark state. We then show that the mass 1.405 GeV is well
reproduced when using the K̄N (I=0) multiquark state. The uncertainties in our sum rules are also
discussed.

1 introduction

QCD sum rule [1–3] is a powerful tools to extract various
properties of hadrons. However, most QCD sum rule ap-
proaches have been applied to the lowest lying states, and
it is rather difficult to properly extract physical properties
of the excited states. For example, there have been only a
limited number of works on the excited baryons [4–8] in
which we are interested in this work.

Recently, we have proposed a new QCD sum rule
analysis [9] for calculating the mass of the Λ (1405). It
was based on using the multiquark interpolating field
((qq̄)(qqq)) instead of the usual nucleon three quark in-
terpolating field (qqq).

In the case of the Λ (1405) its nature is not revealed
completely yet, i.e. whether it is an ordinary three-quark
state or a K̄N bound state or a mixed state of the pre-
vious two possibilities [10]. In [9] we have focused on the
decay channel of the Λ (1405) and introduced the π0Σ0

multiquark interpolating field in order to get the Λ (1405)
mass since the Λ (1405) is only observed in the mass spec-
trum of the πΣ channel (I=0). It has been found that the
multiquark picture can be used to extract physical prop-
erties of the excited baryons; e.g. the mass of the excited
baryon which is not fully accessible in the conventional
QCD sum rule approach.

In this work we extend our previous analysis to
the isospin I=1 multiquark states, i.e. K̄N , πΣ, and
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πΛ multiquark states. Our interpolating fields couple to
both positive- and negative-parity, spin-1

2 baryon states.
Among the Σ particles (I=1), the lowest spin- 1

2 state
which couples to the K̄N , πΣ, and πΛ channels is the
Σ (1620) although the evidence of its existence is only
fair [10]. We do not know the genuine structure of the Σ
(1620). However, we can construct possible three multi-
quark states for the Σ (1620) considering its decay chan-
nels. Then, we can obtain the Σ (1620) mass by following
the same procedures in [9], i.e. by comparing the mass of
the K̄N , πΣ, and πΛ multiquark states each other.

In Sect. 2 we present QCD sum rules for the I=1 mul-
tiquark states and explain how to get the Σ (1620) mass.
In Sect. 3 we also present a QCD sum rule for the Λ (1405)
mass by taking into account the π+Σ− + π0Σ0 + π−Σ+

multiquark interpolating field, and compare it with the
previous result for the π0Σ0 multiquark interpolating
field. We discuss the uncertainties in our sum rules and
summarize our results in Sect. 4.

2 QCD sum rules for I=1 multiquark states

Let’s consider the following correlator:

Π(q2) = i

∫
d4xeiqx〈T (J(x)J̄(0))〉, (1)

where J = π+Σ−−π−Σ+ or J = K̄0n−K−p, or J = πΛ
correspond to the multiquark interpolating fields for the
isospin I=1 states. The overall factor is irrelevant in our
calculation. Here, we take the interpolating fields for the
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Fig. 1. Diagrams. Solid lines are the quark propagators. (a)
“bound” diagrams (b) “unbound” diagrams

nucleon, the Σ, and the Λ particle as usual ones in the
QCD sum rule calculations [11,2]. For example, in the case
of the π0Λ multiquark state we take J = εabc(ūeiγ5ue −
d̄eiγ

5de)([uTaCγµsb]γ
5γµdc − [dTaCγµsb]γ

5γµuc), where u,
d and s are the up, down and strange quark fields, and
a, b, c, e are color indices. T denotes the transpose in Dirac
space and C is the charge conjugation matrix.

The conventional QCD sum rule approach shows that
the continuum effect becomes larger with increasing the
dimension of the interpolating field and thus the results
are more sensitive to a continuum threshold. However, as
shown below we suggest a new approach to get the Σ
(1620) mass regardless of the large continuum effect.

In the case of the π+Σ−−π−Σ+ and K̄0n−K−pmulti-
quark interpolating fields there are no exchange diagrams
such as Fig. 1(a), where the lowest two lines correspond
to the quark fields of a meson and the others are those
of a baryon. Then, for example, in the case of the K̄N
multiquark states the mass of the I=1 state is the same
as that of the I=0 state, i.e. the K̄0n + K−p multiquark
state. Hence, for the K̄N and πΣ (I=1) multiquark states
we use the K−p and π−Σ+ multiquark sum rules in the
previous work [9].

On the other hand, in the case of the πΛ multiquark
states both the π0Λ and π±Λ multiquark interpolating
fields give the same mass within SU(2) symmetry (i.e. mu

= md = 0 and 〈ūu〉 = 〈d̄d〉). Thus, in what follows we
present a QCD sum rule for the π0Λ multiquark state
only. The OPE side has two structures:

ΠOPE(q2) = ΠOPE
q (q2)/q +ΠOPE

1 (q2)1. (2)

In this paper, however, we only present the sum rule from
the Π1 structure (hereafter referred to as the Π1 sum rule)
because the Π1 sum rule (the chiral-odd sum rule) is gen-
erally more reliable than the Πq sum rule (the chiral-even
sum rule) as emphasized in [12] and also in our previous
work [9]. The OPE side is given as follows.

ΠOPE
1 (q2)=+

11 ms

π8 218 32 52
q10ln(−q2)

+
1

π6 215 32 5
(40〈q̄q〉 − 11〈s̄s〉)q8ln(−q2)

− m2
s

π6 214 32
(80〈q̄q〉+ 11〈s̄s〉)q6ln(−q2)

− ms

π4 29 32
(23〈q̄q〉2 − 20〈q̄q〉〈s̄s〉)q4ln(−q2)

+
1

π2 26 32
(40〈q̄q〉3 + 45〈q̄q〉2〈s̄s〉)q2ln(−q2)

− m2
s

π2 26 32
(26〈q̄q〉3 − 45〈q̄q〉2〈s̄s〉)ln(−q2)

− ms

24 33
(132〈q̄q〉4 − 37〈q̄q〉3〈s̄s〉) 1

q2
, (3)

where ms is the strange quark mass and 〈q̄q〉, 〈s̄s〉 are the
quark condensate and the strange quark condensate, re-
spectively. Here, we let mu = md = 0 6= ms and 〈ūu〉
= 〈d̄d〉 ≡ 〈q̄q〉 6= 〈s̄s〉. We neglect the contribution of
gluon condensates and concentrate on tree diagrams such
as Figs. 1(a) and 1(b) (hereafter referred to as “bound”
diagrams and “unbound” diagrams, respectively), and as-
sume the vacuum saturation hypothesis to calculate quark
condensates of higher dimensions. Note that only some
typical diagrams are shown in Fig. 1.

The contribution of the “bound” diagrams is a 1/Nc
correction to that of the “unbound” diagrams, where Nc
is the number of the colors. In (3) and in what follows
we set Nc = 3. The “unbound” diagrams correspond to
a picture that two particles are flying away without any
interaction between them. In the Nc → ∞ limit only the
“unbound” diagrams contribute to the πΛmultiquark sum
rule. Then, the πΛ multiquark mass should be the sum of
the pion and the Λ mass in this limit. For the sake of
reference, we present the OPE side in the Nc → ∞ limit
in the below.

Π
OPE(Nc→∞)
1 (q2)

= +
ms

π8 216 3 52
q10ln(−q2)

+
1

π6 213 3 5
(4〈q̄q〉 − 〈s̄s〉)q8ln(−q2)

− m2
s

π6 212 3
(8〈q̄q〉+ 〈s̄s〉)q6ln(−q2)

− ms

π4 28 32
(19〈q̄q〉2 − 12〈q̄q〉〈s̄s〉)q4ln(−q2)

+
1

π2 24 3
(4〈q̄q〉3 + 5〈q̄q〉2〈s̄s〉)q2ln(−q2)

− m2
s

π2 24 3
(4〈q̄q〉3 − 5〈q̄q〉2〈s̄s〉)ln(−q2)

− ms

32
(3〈q̄q〉4 − 〈q̄q〉3〈s̄s〉) 1

q2
. (4)

The OPE sides in (3) and (4) have the following form:

ΠOPE
1 (q2) = a q10ln(−q2) + b q8ln(−q2)

+ c q6ln(−q2) + d q4ln(−q2)

+ e q2ln(−q2) + f ln(−q2) + g
1
q2
, (5)

where a, b, c, · · · , g are constants. Then we parameterize
the phenomenological side as
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Fig. 2. The Borel-mass dependence of the πΛ multiquark mass
at s0 = 2.756 GeV2

1
π
ImΠPhen

1 (s) = λ2mδ(s−m2)

+ [−a s5 − b s4 − c s3 − d s2 − e s− f ]
· θ(s − s0), (6)

where m is the πΛ multiquark mass and s0 the continuum
threshold. λ is the coupling strength of the interpolating
field to the physical Σ (1620) state. After Borel transfor-
mation the mass m is given by

m2 = M2 ×
{ −720a(1−Σ6)− 120b

M2
(1−Σ5)− 24c

M4
(1−Σ4)

− 6d
M6

(1−Σ3)− 2e
M8

(1−Σ2)− f

M10
(1−Σ1)} /

{ −120a(1−Σ5)− 24b
M2

(1−Σ4)− 6c
M4

(1−Σ3)

− 2d
M6

(1−Σ2)− e

M8
(1−Σ1)

− f

M10
(1−Σ0)− g

M12
}, (7)

where

Σi =
i∑

k=0

sk0
k ! (M2)k

e−
s0
M2 . (8)

Figure 2 shows the Borel-mass dependence of the πΛ mul-
tiquark mass at s0 = 2.756 GeV2 taken by considering the
next Σ (1660) [10]. There is a plateau for the large Borel
mass, but this is a trivial result from our crude model on
the phenomenological side. Hence we do not take this as
the πΛ multiquark mass and neither as the Σ (1620) mass.

Instead, we draw the Borel-mass dependence of the
coupling strength λ2 at s0 = 2.756 GeV2 in Fig. 3. There

Fig. 3. The Borel-mass dependence of the coupling strength
λ2 from the πΛ multiquark sum rule at s0 = 2.756 GeV2

is the maximum point in the figure. It means that the
πΛ multiquark interpolating fields couples strongly to the
physical Σ (1620) state at this point. Then we take the
Σ (1620) mass as that of the πΛ multiquark state at the
point. However, s0 is taken by hand considering the exper-
imental Σ (1660) mass. It would be better to determine
an effective threshold s0 from the present sum rule itself.
In what follows we explain how to determine the effective
threshold and thus the Σ (1620) mass.

The Σ (1620) is the lowest spin- 1
2 state which couples

to the three I=1 multiquark states, i.e. the K̄N , πΣ, and
πΛ states. The aim of the present work is to get the masses
of the K̄N , πΣ, and πΛ multiquark states, where the cou-
pling strength of each multiquark state has its maximum
value. We take the same threshold for each multiquark
sum rule. Why we can compare the multiquark masses at
the same threshold although they are obtained with differ-
ent interpolating fields will be clear later. We choose the
threshold in order that the K̄N multiquark mass becomes
the sum of the kaon and the nucleon mass at least. Then,
above the threshold the Σ (I=1) particle can couple to
the πΣ, πΛ and K̄N multiquark states, while below the
threshold to the πΣ and/or πΛ multiquark state(s) only.

Let us consider the K̄N multiquark sum rule to get
the effective threshold. The OPE side is the same as that
of the K+p multiquark sum rule without the contribution
of “bound” diagrams [9], and thus given by

Π
OPE(Nc→∞)
1 (q2)

= +
1

π6 213 3 5
〈q̄q〉q8ln(−q2)− m2

s

π6 211 3
〈q̄q〉q6ln(−q2)

− ms

π4 28 3
(2〈q̄q〉2 − 〈q̄q〉〈s̄s〉)q4ln(−q2)

+
1

π2 24 3
(2〈q̄q〉3 + 〈q̄q〉2〈s̄s〉)q2ln(−q2)
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Fig. 4. The Borel-mass dependence of the K̄N multiquark
mass in the fiducial Borel interval at s0 = 3.852 GeV2

− m2
s

π2 24 3
(4〈q̄q〉3 − 〈q̄q〉2〈s̄s〉)ln(−q2)

− ms

2 32
(2〈q̄q〉4 − 〈q̄q〉3〈s̄s〉) 1

q2
. (9)

Fig. 4 presents the Borel-mass dependence of the K̄N mul-
tiquark mass in the fiducial Borel interval which lies in the
30 % – 50 % criteria, i.e. the contribution of the power
correction is less than 30 % and that of the continuum
is less than 50 %. We define A ≡ M2 × −120b

−24b and B ≡
M2× −120b− 24c

M2− 6d
M4− 2e

M6−
f

M8

−24b− 6c
M2− 2d

M4− e
M6−

f

M8−
g

M10
. Then, we calculate the

contribution of the power correction as C ≡ 1−
√
A√
B

. Us-
ing this factor we determine the lower bound of the Borel
interval where C is 0.3 at most. On the other hand, we
choose the upper bound of the Borel interval in order that

the factor D ≡ 1 −
√

(7)√
B

is 0.5 at most. Since there is no
plateau in the fiducial Borel interval in Fig. 4, we take the
K̄N multiquark mass as an average value in the interval.
Then, we get s0 = 3.852 GeV2 where the average mass
becomes mK + mp = 1.435 GeV.

Now, let us go back to the Σ (1620) mass. We redraw
the Borel-mass dependence of the coupling strength from
the πΛ multiquark sum rule at s0 = 3.852 GeV2 obtained
in the above, and then take the Σ (1620) mass as the value
where the coupling strength has its maximum value. In
Table 1 we present the mass m for each multiquark state,
where we take 〈q̄q〉 = – (0.230 GeV)3, 〈s̄s〉 = 0.8 〈q̄q〉, and
ms = 0.150 GeV as input parameters. In the case of the
K̄N and πΣ multiquark states we use the same masses
in [9] obtained from the K−p and the π−Σ+ multiquark
state, respectively. Figure 5 shows the coupling strength
and the mass from each multiquark state at s0 = 3.852
GeV2. The average mass from three states in the table

Table 1. Mass of the K̄N , πΣ, and πΛ (I=1) multiquark
states at s0 = 3.852 GeV2 ( 〈q̄q〉 = – (0.230 GeV)3, 〈s̄s〉 =
0.8 〈q̄q〉, and ms = 0.150 GeV).

multiquark state m(GeV)

K̄N 1.589
πΣ 1.606
πΛ 1.581

Fig. 5. The coupling strengths and masses from the K̄N , πΣ,
and πΛ multiquark states at s0 = 3.852 GeV2

is about 1.592 GeV, and it is rather smaller than the ex-
perimental value, 1.620 GeV [10]. Figure 6 presents the
Borel-mass dependence of the πΛ multiquark mass on the
strange quark mass, the strange quark condensate, and
the quark condensate, respectively, at s0 = 3.852 GeV2.
It seems that the SU(3) symmetry breaking effects are not
significant in our sum rule.

It is interesting to note that the masses in Table 1
are very similar. We have checked that at an arbitrary
threshold three multiquark sum rules give similar masses.
Thus, in principle we can predict another mass of the Σ
excited state using these three multiquark sum rules if the
threshold is taken properly.

Let us stop here to remark why the multiquark masses
are similar although they are calculated from different in-
terpolating fields, i.e. the K̄N , πΣ and πΛ multiquark
interpolating fields, respectively. First of all, comparing
(4) and (9) one can easily find that they have the same
structure within SU(3) symmetry (mu = md = ms = 0,
〈q̄q〉 = 〈s̄s〉). For completeness, we write down the OPE
side for the πΣ multiquark interpolating field in the
Nc →∞ limit.
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(a)

(b)

(c)

Fig. 6. The Borel-mass dependence of the πΛ multiquark mass
at s0 = 3.852 GeV2 on (a) the strange quark mass (b) the
strange quark condensate (c) the quark condensate

Fig. 7. The SU(3) symmetry breaking effects in the πΛ mul-
tiquark sum rule at s0 = 3.852 GeV2

Π
OPE(Nc→∞)
1 (q2)

= − ms

π8 216 3 52
q10ln(−q2) +

1
π6 213 3 5

〈s̄s〉q8ln(−q2)

+
m2
s

π6 212 3
〈s̄s〉q6ln(−q2)− ms

π4 27
〈q̄q〉2q4ln(−q2)

+
1

π2 24
〈q̄q〉2〈s̄s〉q2ln(−q2) +

m2
s

π2 24
〈q̄q〉2〈s̄s〉ln(−q2)

− ms

32
〈q̄q〉4 1

q2
. (10)

Of course, as we said before, there is no contribution of
the “bound” diagrams for the K̄N and πΣ multiquark
sum rules. Second, as shown in Fig. 6 the SU(3) symme-
try breaking effects are small in our sum rules. In Fig. 7 we
plot the πΛ multiquark mass with(the solid line) and with-
out(the dotted line) the SU(3) symmetry breaking effects.
We draw the solid line using 〈q̄q〉 = – (0.230 GeV)3, 〈s̄s〉 =
0.8 〈q̄q〉, and ms = 0.150 GeV, while draw the dotted line
taking 〈q̄q〉 = – (0.230 GeV)3, 〈s̄s〉 = 1.0 〈q̄q〉, and ms = 0.
Last, the contribution of the “bound” diagrams in the πΛ
multiquark sum rule is very small as shown in Fig. 8. The
solid line is the πΛ multiquark mass from all diagrams; i.e.
the “unbound” + “bound” diagrams (from (3)), while the
dotted line is the mass from the “unbound” diagrams only
(from (4)). Because of the above reasons the masses from
three multiquark sum rules are similar. Hence, we can ap-
ply the same threshold for each multiquark sum rule and
compare the multiquark mass each other.

3 QCD sum rules for I=0 multiquark states

In the following we get the Λ (1405) mass by taking
into account the π+Σ− + π0Σ0 + π−Σ+ (I=0) multi-
quark interpolating field and compare the mass with the
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Fig. 8. The contribution of “bound” diagrams in the πΛ mul-
tiquark sum rule at s0 = 3.852 GeV2

previous result for the π0Σ0 multiquark state [9]. The
π+Σ− + π0Σ0 + π−Σ+ multiquark state is the complete
basis for the I=0 state in contrast to the π0Σ0 multiquark
state.

The ΠOPE
1 for the π+Σ−+π0Σ0 +π−Σ+ multiquark

state is given by

ΠOPE
1 (q2)

= − 7 ms

π8 218 32 5
q10ln(−q2) +

7
π6 215 32

〈s̄s〉q8ln(−q2)

+
35 m2

s

π6 214 32
〈s̄s〉q6ln(−q2)− 121 ms

π4 29 32
〈q̄q〉2q4ln(−q2)

+
11

π2 26
〈q̄q〉2〈s̄s〉q2ln(−q2)

− m2
s

π2 26 3
(14〈q̄q〉3 − 33〈q̄q〉2〈s̄s〉)ln(−q2)

− ms

24 33
(140〈q̄q〉4 + 3〈q̄q〉3〈s̄s〉) 1

q2
, (11)

and in the Nc →∞ limit

Π
OPE(Nc→∞)
1 (q2)

= − ms

π8 216 52
q10ln(−q2) +

1
π6 213 5

〈s̄s〉q8ln(−q2)

+
m2
s

π6 212
〈s̄s〉q6ln(−q2)− 65 ms

π4 28 32
〈q̄q〉2q4ln(−q2)

+
3

π2 24
〈q̄q〉2〈s̄s〉q2ln(−q2)

− m2
s

π2 24 3
(4〈q̄q〉3 − 9〈q̄q〉2〈s̄s〉)ln(−q2)

− ms

3
〈q̄q〉4 1

q2
. (12)

In the case of the Λ (1405) it couples to the πΣ chan-
nel only. Thus, we take the threshold s0 = 3.082 GeV2

Table 2. Mass of the π+Σ−+π0Σ0 +π−Σ+ (I=0) multiquark
state ( 〈s̄s〉 = 0.8 〈q̄q〉, ms = 0.150 GeV). [· · ·] means the value
from the π0Σ0 multiquark state.

quark condensate (GeV3) s0 (GeV2) m(GeV)

–(0.210)3 3.093 [3.015] 1.443 [1.434]
–(0.230)3 3.082 [3.012] 1.424 [1.419]
–(0.250)3 3.077 [3.008] 1.409 [1.404]

Table 3. Mass of the K̄N and πΣ (I=0) multiquark states
at s0 = 3.852 GeV2 ( 〈q̄q〉 = – (0.230 GeV)3, 〈s̄s〉 = 0.8 〈q̄q〉,
and ms = 0.150 GeV). [· · ·] means the value from the π0Σ0

multiquark state.

multiquark state m(GeV)

K̄N 1.589
π+Σ− + π0Σ0 + π−Σ+ 1.612 [1.625]

in order that the πΣ (I=0) multiquark mass becomes the
sum of the pion and the Σ mass in the fiducial Borel
interval when only the “unbound” diagrams are consid-
ered. Here, we use the average mass of the pions and
the Σ particles, i.e. 0.138 + 1.193 = 1.331 GeV. In or-
der to get the Borel interval we define new parameters

C ′ ≡ 1−
√
A′√
B′

and D′ ≡ 1−
√

(7)√
B′

, where A′ ≡M2× −720a
−120a

and B′ ≡ M2 × −720a− 120b
M2 − 24c

M4− 6d
M6− 2e

M8−
f

M10

−120a− 24b
M2− 6c

M4− 2d
M6− e

M8−
f

M10−
g

M12
. Fol-

lowing the same procedures in the previous section we get
the Λ (1405) mass as shown in Table 2. The mass is very
similar to that of the π0Σ0 multiquark state. In Table
2 we also present the variation of the Λ (1405) mass on
the quark condensate. The mass becomes smaller as the
absolute value of the quark condensate increases.

On the other hand, the K̄N (I=0) multiquark mass
at s0 = 3.082 GeV2 is 1.405 GeV, and it is closer to the
experimental value comparing to 1.387 GeV which was
obtained previously using the threshold s0 = 3.012 GeV2

from the π0Σ0 multiquark sum rule [9]. Fig. 9 shows the
coupling strength and the mass from the K̄N and π+Σ−+
π0Σ0 + π−Σ+ multiquark state, respectively.

One can easily find that within SU(3) symmetry (mu =
md = ms = 0, 〈q̄q〉 = 〈s̄s〉) (12) has the same structure
as in (9). Note that the K̄N (I=0) multiquark sum rule
is the same as the K̄N (I=1) multiquark sum rule since
there is no contribution of the “bound” diagrams for the
K̄N (both I=0 and I=1) multiquark interpolating fields.

Table 3 shows the masses from the I=0 multiquark
states at s0 = 3.852 GeV2, and these values correspond
to the Λ (1600) mass. Because the Λ (1600) couples to
both the K̄N and πΣ channels (I=0), we get the Λ (1600)
mass by comparing the K̄N and πΣ multiquark mass at
the same threshold. The average mass between the K̄N
and π+Σ−+π0Σ0 +π−Σ+ (I=0) multiquark states in the
table is 1.601 GeV.
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Fig. 9. The coupling strengths and masses from the K̄N and
π+Σ− + π0Σ0 + π−Σ+ multiquark states at s0 = 3.082 GeV2

4 discussion

Let us discuss the uncertainties in our results. Comparing
Tables 1 and 3, each average mass of the I=0 and I=1 mul-
tiquark states is slightly different from the experimental
values, i.e. the Λ (1600) and the Σ (1620), respectively.
Note that in the previous sections we have used the same
threshold for the I=1 and I=0 K̄N multiquark states be-
cause we can not distinguish the I=1 state from the I=0
state in our approach.

The mass difference can be calculated by including the
isospin symmetry breaking effects (i.e. mu 6= md 6= 0,
〈ūu〉 6= 〈d̄d〉, and electromagnetic effects) in our sum rules
as in [13–20]. If this correction is included, then the thresh-
old for the K̄N multiquark state will be different from the
previous one. Then, the masses of other multiquark states
(both the I=0 and I=1 states) can also be changed ac-
cording to the new threshold.

On the other hand, one can consider the contractions
between the ū and u (or between the d̄ and d) quarks in
the initial state which have been excluded in our previous
calculation. If this correction is taken into account, then
we can distinguish between the K̄0n + K−p (I=0) and
K̄0n −K−p (I=1) multiquark states because it is one of
1/Nc corrections. Although we are only interested in the
five-quark states in the initial state, one can check easily
the amount of contribution to the previous calculation. In-
cluding this correction the mass for the K̄0n+K−p (I=0)
multiquark state becomes 1.590 GeV while 1.588 GeV for
the K̄0n − K−p (I=1) multiquark state at s0 = 3.852
GeV2. Note that the effective threshold s0 is obtained by
including the “unbound” diagrams only and thus we can
use the same threshold for both multiquark states. The
masses of other multiquark states are rarely changed even
if this correction is considered. It is found that this cor-
rection is very small comparing to other 1/Nc corrections,

i.e. the contribution of “bound” diagrams. Another pos-
sibility to get the mass difference will be the correction
from the possible instanton effects [21–23] to the I=0 and
I=1 states, respectively.

In this work we have neglected the contribution of
gluon condensates. Since we have considered the Π1 sum
rule (the chiral-odd sum rule), only the odd dimensional
operators can contribute to the sum rule. For example,
the contribution of the gluon condensates is given by the
terms like ms〈αsπ G2〉 and thus can be neglected comparing
to other quark condensates of the same dimension. How-
ever, as shown in the nucleon sum rule, the gluon conden-
sate term significantly affects the Borel-stability although
it is numerically small. In this respect, further analysis in-
cluding the contribution of the gluon condensates in our
sum rules is required before any firm conclusions may be
drawn.

In summary, the Σ (1620) mass is predicted in the
QCD sum rule approach using the K̄N , πΣ, and πΛ
(I=1) multiquark interpolating fields. The mass from the
Π1 sum rule (the chiral-odd sum rule) is about 1.592
GeV. The Λ (1405) mass is also obtained considering the
π+Σ−+π0Σ0 +π−Σ+ (I=0) multiquark state. The mass
is 1.424 GeV, while that of the K̄N (I=0) multiquark
state is 1.405 GeV. On the other hand, it would be in-
teresting to calculate the Σ (1620) mass by following the
methods in [7,8] which have obtained the N (1535) and
the Λ (1405) mass, respectively, using the interpolating
fields with a covariant derivative.
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